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A definition of strong stability and strong instability is proposed for a linear periodic Hamiltonian system of differential equations
under a given non-Hamiltonian perturbation. Such a system is subject to the action of periodic perturbations: an arbitrary
Hamiltonian perturbation and a given non-Hamiltonian one. Sufficient conditions for strong stability and strong instability are
established. Using the lincar periodic Lagrange equations of the second kind, the effect of gyroscopic forces and specified dissipative
and non-conservative perturbing forces on strong stability and strong instability is investigated on the assumption that the critical
relations of combined resonances are satisfied.

Because of the presence of dissipative forces, many systems are described by differential equations that
may be considered Hamiltonian only to within a certain degree of accuracy. Dissipative and non-conser-
vative forces are often introduced so as to stabilize the performance of various controlled systems. More-
over, a paradoxical effect has been observed and investigated ([1-3], and so on), consisting of the
expansion of the unstable regions of combined resonances when the dissipative forces are increased.
In that connection Kirpichnikov [4, 5] proposed an approach which, starting from already known effects
due to the influence of dissipative forces on the stability of equilibrium positions in stationary Lagrangian
systems [6, 7], extends the analysis to the case of almost-Hamiltonian linear periodic systems of differen-
tial equations.

A theorem proved in [5] provides sufficient conditions for the system considered below to be strongly
stable or strongly unstable with respect to a given non-Hamiltonian perturbation. The theorem has been
used [8, 9] to investigate the stability of the rotational motion of a composite satellite in a slightly elliptic
orbit.

This paper presents a stronger version of that theorem. The following fact will be illustrated through
examples. Suppose that the unperturbed periodic Hamiltonian system is strongly stable in Krein’s sense
[10-12], i.e. it is stable and remains stable under arbitrary periodic Hamiltonian perturbations, and
suppose that when a given non-Hamiltonian periodic perturbation is applied the system becomes asymp-
totically stable. At combined resonances, the combined action of both factors may make the system
unstable, i.e. it will not always be strongly stable in the sense defined in this paper. Conversely, if a non-
Hamiltonian perturbation induces instability, the system may be stabilized by the addition of a suitable
Hamiltonian term.

Thus, the paradoxical effect of [1-3] is increased further: the introduction of dissipative perturbing
forces in a periodic Hamiltonian system, strongly stable in Krein’s sense, may make the system unstable
at combination resonances.

1. THE STRONG STABILITY AND STRONG INSTABILITY THEOREM

Consider a linear periodic Hamiltonian system of ordinary differential equations
x =IHx, x=(p,q) € R? (1.1)

and a perturbed linear periodic system “close to” system (1.1):
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x =I(H+¢eH,)x +eAx+o(e)x, x=(p,q)eR¥" (1.2)

where € = 0 is a small parameter, and H = H, H] = Hy, A, o(g) are real 2n x 2n matrices which
are piecewise continuous and T-periodic in the independent variable—the time ¢. The elements of
o(e) are of first order of smallness in €. The matrices I, H and A may be written in partitioned form

as
-0 -
=g ,

where {H;,, Ay} are n X n matrices, Hy;, Hy are symmetric and E is the n x n identity matrix.
The phase space R* = {x} of canonical variables x = (p, q) of systems (1.1) and (1.2), and
the spaces R” = {p} of generalized momentap = (py,...,p,) and R” = {q} of generalized coordinates
q = (41, . - - » gn) are considered with the standard Euclidean structures; scalar products are denoted
by ordinary parentheses. The Hamiltonian of the unperturbed system is H = (Hx, x)/2. The matrix
€H; denotes an arbitrary Hamiltonian perturbation and the matrix €A is a given non-Hamiltonian
perturbation.

System (1.1) or (1.2) is said to be stable (unstable) if its trivial solution x = O is stable (unstable) in
Lyapunov’s sense.

_Hn Hp
H, Hy|

AIl A12

A=
AZl A22

(13)

Definition. System (1.1) is said to be strongly stable (strongly unstable) under the non-Hamiltonian
perturbatlons €Ax if, for any real symmetric piecewise-continuous 7-periodic matrix H;, system (1.2)
is stable (unstable) for any sufficiently small € > 0.

Our problem is to derive criteria for the strong stability and strong instability of system (1.1) under
a given non-Hamiltonian perturbation.

Let ®(t, €) be a fundamental matnx of system (1.2), normalized at zero, and let ®(t) = ®(t, 0).
Consider the operators O, O R — R” corresponding to systems (1 1) and (1.2) over the period
T. To the operator ®: R — R there corresponds a symplectic matrix ® = &(T).

In the space R, we define a skew product

[x,z]=(Ix,z) Vx,zeR?" 1.4)
corresponding to the symplectic coordinates p, q, and a bilinear form
[x,z]; =(Jx,z) Vx,zeR>" (1.5)

J =? (@) (ATI+1A)D()d, §7 =-] (1.6)

If det J # 0, the bilinear form (1.5) will define another skew product in R*".

Cons1der the standard complexification of R, obtained by changing to the 2n-dimensional complex
space C** = °R?, The scalar and skew products will be carried over from R to C¥* not in the usual
manner but by extendmg them by linearity over the field C!. The complexifications of the real linear
operators defined in R? will be denoted by the same letters.

If system (1.1) is such that at least one of its multipliers

Hiveeosbgs BB kS, (024, p;2H, for jzv) 1.7)

i.e. the eigenvalues of the operator @, differs from unity in absolute value, the question under considera-
tion is trivial: the system is strongly unstable for any given non-Hamiltonian perturbation. From now
on, therefore, we shall assume that the multipliers (1.7) all lie on the circle | i | = 1 in the complex
plane. It is also important that all the results of this paper are obtained on the assumption that system
(1.1) is stable (the elementary divisors of ® are prime).

If p is an r-fold multiplier of system (1.1), we let T" denote the corresponding r-dimensional
complex invariant root subspace of ®, putting T, = T", if p = 1 and T, = T" + T if p # £1.
Each invariant subspace T}, of ® has a basis {e;, €}{ such that

le;.e,]1=0; [e;,€,]=0, j=v; [e;€]1#0; jv=12,..,r (1.8)
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and if the elementary divisors are prime, one can assume that ®e¢; = pe;,j = 1,2, ..., r. Moreover
(summmg fromj = 1'toj =r), we have Re T}, = {x = Z(x 8 + x,e,) IxJ,xJ € Cl}—the subspace of real
vectors m T, so that x = 2X(&r; - 18, wherexj &+m,§,me R}, ¢=r+is,1,8¢€ R”. The
space C%* may thus be expressed as a direct sum C** = ut + o+ Ty of even-dlmensmnal ®-invariant
subspaces.

Later we will need some elements from the theory of Krein, Gel’fand and Lidskii. A multiplier p of
a symplectic mapping ®: R%* — R?" is said to be sign-definite if the quadratic form [®x, x], x € Re T,
is sign-definite. The multipliers +1, -1 and multipliers with multiple elementary divisors cannot be s1gn-
definite. For an r-fold multiplier p with prime elementary divisors and such that y = Im p # 0 we have

[@x,x]=20% 1x;2[e;,8;1=4YZ (&2 +nDr;.s;] (19)

i.e. p is sign-definite if and only if all the numbers {i[e;, &]}] have the same sign. A prime multiplier
is always sign-definite. A symplectic transformation ® of R?" is said to be strongly stable if any
sufficiently close symplectic transformation of the same space is also stable. A symplectic transforma-
tion @ is strongly stable if and only if all its eigenvalues lie on the unit circle | p | = 1 and are all sign-
definite.

A few examples will now illustrate the qualitative effects that may be caused by the combined action of
Hamiltonian and non-Hamiltonian perturbations in cases of combined resonances. We will first carry out the analysis
in the class of operators corresponding to systems (1.1) and (1.2) over one period, and then consider specific examples
of the systems themselves. Putting n = 2, T = 2n, define

L] cE o dy,

“loy o (1.10)

P2n.e)=1+ed;, P = '

where 0, dy; and dy; are real constants. The matrix ®(2r, €) is symplectic for € > 0 if and only if 6 = 0, dy; = dy;.
An easy analysis of the absolute values of the multipliers, i.e. the roots of the equation

pt +(2-20e~djpdy et +(1-0€)2 =0 (1.11)

shows that the operator @, is stable. In the unperturbed case, ®(2rn, 0) = I, we have two sign-definite double
multipliers {-1, +1}, i.e. system (1.1) is stable in Krein’s sense.

Example 1. A given non-Hamiltonian (index minus) perturbation: dy; = dy; = 1, d,; = d3; = -1, 6 = 0 defining
an unstable system (1.2) when € > 0, H; = O, may be stabilized by a suitable Hamiltonian parametric apphed
force. Thus, when this perturbation is combined with a Hamiltonian (index plus) perturbatlon dyp =df; =2,
d21 = d21 =2, 6 = 0, the total perturbatlon will be d12 =dp + d12 =3, d21 = d21 + d21 = 1, o = 0, which makes
system (1.2) stable when € > 0. Thus, a system which is strongly stable in Krein’s sense and unstable under a given
non-Hamiltonian perturbation when € > 0, H; = O may be stabilized by a Hamiltonian perturbation, i.e. it need
not be strongly unstable in the sense of the definition adopted here.

Example 2. A given non-Hamiltonian perturbationdy; =dp; = -1,dy =dyy = -3, 0 =12 deﬁnes an asymptotlcally
stable system (1.2) wlnen ¢ > 0, H; = 0. In combination with a Hamiltonian perturbation dj, = 2,d3; = 2,6 =0
we getdy; =dy; +dY; =1,d; =d3 +d3% = -1, 6 = 12 and system (1.2) becomes unstable when ¢ > 0. Thus,
a system that is strongly stable in Krein’s sense and asymptotica]]y stable under a given non-Hamiltonian perturbation
when € > 0, H; = O need not be strongly stable in the sense of the definition adopted here.

Taking a specific example of systems (1.1) and (1.2), let us put H; = O and include all perturbations in the matrix
A. System (1.1) will be

Pi=-01q), Py =-0q, Gi=01p. §3=0 (1.12)
where the case corresponding to combined-difference resonance is
=By =Jat+k, wy=By=Yi+ky, K=k, ki eN={0,12,..}; By-PB =ky~k =0 (1.13)
and that corresponding to combined-sum resonance is

_Bl=y4+kl’ —0.)2=Bz=3/4+k2, kzakl, k]GN; Bz+B|=l+k|+k2?1 (114)

At simple resonance (1.13), k; = k;, the effects under consideration may occur in linear systems with constant
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coefficients, i.e. A = const. The matrix (1.10) corresponds to the perturbed system (1.2) with
A =—((4k; +1)nD +20E)/ (8r), A, =(2D+(4k, +1)omE)/(81) (1.15)
A,y = (2D +(4k; +1)onE)/ (8®), A, =((4k; +1)nD-20E)/ (8n)
This system is equivalent to the following Lagrange equations of the second kind
qi 1 ©) +®,q, =-£0g; / 2w m)+&d1q 12m)+0(e?) (1.16)
g5 1 ©, +®,qy = —€0q3  (20,7) +edy g, / (21) +O(e?)
In the general case of resonances (1.13) and (1.14), the matrix (1.10) corresponds to system (1.2), e.g. with a

piecewise-smooth 2x-periodic matrix A(7) defined over the period ¢ € [0, 2x] by setting ¢; = cos(wy), s; = sin(wy),
i=1,2,§=(1-cost)/(2r)

2
A, =g ~asd; 5160 cierdyy
’ 12 =
‘02S|d2| *S%O C|C2d2| §207C
1.17)
€150 ~5187d, _c? .
Azl = 191 192412 _c o S|C2d|2
—5152dy1 €520 syedy  —cio

The equivalent Lagrange equations of the second kind for this system are rather cumbersome and will be omitted
for brevity.

We now return to our investigation of the general problem.

Definition. We shall say that a multiplier u of system (1.1) is of first class if both quadratic forms
[®@x, x], [®x, x];, x € Re T, are sign-definite of different signs; a multiplier p of system (1.1) will
be of second class if the closure of the domain in which the quadratic form [®x, x] x € Re T, is
s1gn-deﬁn1te (without the pomt x = 0) is a subdomain of that in which the form [®x, x];, x € Re T},
is sign-definite with the same sign.

Not every multiplier is of first or second class. In particular, a necessary condition for p to be of first
class is that it should be sign-definite, i.e. that the corresponding quadratic form [®x, x], x € Re T,
should be sign-definite.

Theorem 1. If every multiplier y;, . . ., p of the unperturbed system (1.1) is of first class, then system
(1.1) is strongly stable under a given non-Hamiltonian perturbation. If at least one of them is of second
class, the unperturbed system (1.1) is strongly unstable under a given non-Hamiltonian perturbation.

This is the fundamental theorem on the sufficient conditions for the strong stability and instability
of system (1.1) under a given non-Hamiltonian perturbation. The proof makes use of discrete Lyapunov
and Chetayev functions. If the multipliers p;(¢), . . . , w(€) of the perturbed system (1.2) tend continuously
as € — 0 to a multiplier p of system (1.1), one introduces the direct sum T3 = Ty + ... + Ty
of @-invariant subspaces and, in the corresponding real space ReT}, takes the quadratxc form
[Pex, x], x € Re T, as a Lyapunov or Chetayev function. The other changcs needed in the proof given
in [5] are obvious and will be omitted for brevity.

Remarks. 1. Strongly stable systems with a given non-Hamiltonian perturbation that satisfy the conditions of
Theorem 1 are characterized by the property that the trivial solution is asymptotically stable for all sufficiently
small ¢ > 0.

2. There is an important difference between this situation and that of [2], in which the terms “strong stability
and instability of combined resonance frequencies” are considered for a different class of admissible perturbations:
the arbitrary perturbations in that paper are of a higher order of smallness relative to the given ones; the latter, as
in this paper, may be non-Hamiltonian. In addition, the unperturbed system there is gyroscopically disconnected.

3. Shnol’ has shown that the sufficient conditions established in Theorem 1 for the strong stability of a system
(1.1) under a given non-Hamiltonian perturbation are also necessary. His exposition is based on his own definition,
which is equivalent to ours: system (1.1) is strongly stable under a given non-Hamiltonian perturbation €A if it
satisfies the following conditions: (a) it is stable when € = 0; (b) it is asymptotically stable when € > 0, and (for
sufficiently small €) this asymptotic stability is preserved for any superimposed perturbation of order greater than
€; (c) both properties are preserved in some neighbourhood of the system, i.e. for | H — H| < §, where § is
independent of ¢, and H is the Hamiltonian of the new system.



Stability of linear periodic Hamiltonian systems under non-Hamiltonian perturbations 833

4, If the sufficient conditions for strong stability (strong instability) under a given non-Hamiltonian
perturbation are satisfied for system (1.1) with a Hamiltonian function H, they are also satisfied for any “nearby”
T-periodic Hamiltonian systems, i.c. for | H — H | < 3, where 3 is independent of € Thus these conditions guarantce
stability (instability) in an extended sense—under finite Hamiltonian perturbations.

In the non-resonant case [4] the contribution to | y;(e) | = xe¢ + o(e),i = 1,2, ..., n, from the
Hamiltonian part of the perturbation is of order o(g). Here the asymptotic stability (instability) of system
(1.2) when H; = O, as inferred by analysing the signs of x;, . . ., x,,, implies the strong stability (strong
instability) of system (1.1) under a given non-Hamiltonian perturbation. Below, therefore, we shall
consider the resonant case, assuming that at least one of the multipliers (1.7) is multiple and referring
to the corresponding relations among the parameters of system (1.1) as the critical parametric resonance
relations. Taking into account that the multipliers +1, —1 and multipliers with multiple elementary
divisors can be of neither first nor second class, we exclude them from consideration. Now, for an r-
fold multiplier p, 4 = Im p # 0, we have

[q)x x]J _4Y 2{(§ §v+n1nv)[ SI]J +§jnv'([sjvsv].[+[rj1rv]_])} (1'18)
=l

When H = const, there is no need to find the matrix @(¢). Indeed, let p be an r-fold multiplier of
system (1.1). Then the set of ei e envalues of the matrix IH includes numbers *iPy, . .., £if,, where B,
>0,...,B, > 0,sothat p = €'V ore™ BT forallj = 1,2,...,r. The corresponding eigenvectors of the
matrices IH and @ are identical. It will be convenient to modify our notation, requiring henceforth that
¢; be an eigenvector of IH belonging to the eigenvalue iff;,j = 1,2,...,r. Then, forj,v=1,2,...,r,

we have [e;, &] = i(He;, &)/ and

T . .
lej e, ); = PP (ATT+TAe; e, )dr
0 (1.19)

T .
le;,8,]y = | PP (AT +1A)e;, &, )ds
0

2. APPLICATIONS OF THEOREM 1

First let n = 2. We also put H = const, B; > 0, B, > 0 and, without loss of generality, (He,, €,) > 0,
T = 2r. We will refer to a matrix as positive-definite, positive-semidefinite or sign-variable if the
corresponding quadratic form has the appropriate property. For the critical relations of combination
resonances

1B, -B,I=N, N=0,1,2,..., x=-2sin(2np,)#0 2.1)
By+B,=N, N=L2,., x=-2sin(2nf;)#0 (22)

we have, respectively
[®x,x]=X[(E} +n?)(He,, &)/ B, + (&2 +12)(He,,&,)/B,] (2.3)

(®x,x)y =xI&] +0{)a+(EF +13)b +2d(E,E; +nymy) +2c(E,M, —Emy)]
[®x,x]=x[(&] + 7} XHe,, &)/ B — (&7 +n3)(He,, &)/ B,) (24)
[®x.x]y = XUE +ND)a— (&5 +n5)b+2e(EE; ~ M) +2f (M, +Eimy)]
le). €]y =ai, [ey, €]y =bi, [e,€]y=c+id, [e,e,];=e+if (2.5)
These formulae imply the following propositions.

Theorem 2. Assume that conditions (2.1) for combined-difference resonance are satlsﬁed System
(1.1) is strongly stable under a given non-Hamiltonian perturbation if 2 < 0, ab > c+d*and His



834 L. A. Bondarenko et al.

positive-definite; a sufficient condition for the system to be strongly unstable is that one of the follow-
ing conditions holds: (1) ab > c* + d” and H is non-singular and sign-variable; (2) a > 0, ab > ¢ + d°
and H is positive-semidefinite; (3) c = 0,d = 0,a = 0, b < 0 and H is sign-variable, B,a(He,, &,) #
BZb (Hel, é1)'

Theorem 3. Assume that conditions (2.2) for overall combination resonance are fulfilled. System (1.1)
is strongly stable under a given non-Hamiltonian perturbation ifa < 0, ab < —¢* - f2 and H is positive-
definite; a sufficient condition for the system to be strongly unstable is that one of the following conditions
holds: (1) ab < —¢* - f2 and H is positive-definite, (2) a > 0, ab < —¢* - f2 and H is sign-variable or
singular, (3)e = 0,f = 0,4 = 0, b = 0 and H is positive-definite, B,a(He,, &;) # Pb(He,, &,).

Suppose that system (1.1) is strongly stable in Krein’s sense, i.e. the quadratic form (1.9) is sign-definite.
Then, if a given non-Hamiltonian perturbation is introduced, it may either remain strongly stable or
become strongly unstable.

For example, for the difference resonance (2.1), if ab > ¢ + d, and in the case of the sum resonance
(2.2) if ab < —€*— £, the system will remain strongly stable under a given non-Hamiltonian perturbation
if a < 0 or, conversely, become strongly unstable if a > 0.

We will now analyse in greater detail the influence of forces of various kinds on strong stability and
instability as defined here. Suppose that systems (1.1) or (1.2) are derived from Lagrange’s equations
of the second kind, so that the Hamiltonian function H is the Legendre transform of the Lagrange
function

L, = L+¢L; +(o(e)y,y), L=}[(Bq,q)+(Cq,q')-(Pq,q)] (2.6)

where L, = L(t, q, q) is a quadratic form in the variable y = (q, q), piecewise-continuous and 2x-
periodic in ¢, characterizing an arbitrary Hamiltonian perturbation; q € R" is the vector of generalized
velocities that determine the given non-Hamiltonian perturbation have the form

Q=¢Gq +¢Fq 7

For simplicity, the matrices B, C, P, G, F are assumed to be constant, det B# 0, det P+ 0, B is
positive-definite or sign-variable, and we may assume without loss of generality that BT = B, CT =
-C,PT = P, G" = G, F' = —F. In accordance with the usual terminology [7], we will call the forces eFg
non-conservative and the forces eGq- dissipative (definitely dissipative) if the matrix (—G) is positive-
semidefinite (positive-definite). Then Hy; = B, H;; = -B1C/2, Hy =P + C'™BIC/4, A, = GB Ay,
= F - GB!C/2, Ay; = Ay = O. Again putting n = 2 and assuming that B, # B, we findc = 0,d = 0,
e = 0,f =0 and also

- S b S
:—n=Bx(Gf1,f1)—i(Ff1of1)» E=32(sz’fz)—‘(Ff2’f2)v fi#0, £,#0 (2.8)

where f; are the projections of ¢; on the complexification of the space R* = {q},j = 1, 2.
The next two theorems are proved using formulae (2.8) and Theorems 2 and 3 as well as Lemma 2
of [4].

Theorem 4. Consider Lagrange’s equations of the second kind with Lagrangian (2.6) satisfying the
above assumptions. Suppose that the generalized perturbing forces Q = eGq' are definitely dissipative
or possess the property (Gf;, f;) < 0,j = 1, 2. Then, if the difference combination-resonance critical
relations (2.1) hold, N # 0, the unperturbed system of equations is strongly stable under a given non-
Hamiltonian perturbation if both matrices B and P are positive-definite, and strongly unstable otherwise.
If the sum combination-resonance critical relations (2.2) hold, the system cannot be either strongly stable
or strongly unstable with multipliers of the first or second classes.

Theorem 4 is an analogue of the third and fourth Thomson-Tait theorems [7]; it shows that these
theorems also hold when there is an arbitrary sufficiently small Hamiltonian periodic parametric
perturbation not only in the non-resonant case [4], but also in the case of difference combination
resonance (2.1), N= 0.

Let us explain this in greater detail. If the matrices B and P are positive-definite, i.e. the unperturbed
kinetic energy (Bq', q')/2 is positive-definite and the unperturbed potential energy U = (Pq, q)/2 has
a minimum at q = O, then the superposition of dissipative perturbing forces makes the system strongly
stable under this non-Hamiltonian perturbation. But if either of the matrices B or P is not positive-
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definite, e.g. if the potential energy U does not have a minimum at q = O, and the unperturbed system
is stabilized when there is no dissipation by gyroscopic forces, then the superposition of definitely
dissipative perturbing forces makes the system strongly unstable.

Now suppose that the generalized forces (2.7) include non-conservative forces, i.e. F # O. Taking
into account that when C = O the vectors f; and f, may be assumed to be real, we obtain the following
proposition.

Theorem 5. Consider a system of Lagrange equations of the second kind with Lagrangian (2.6)
satisfying all the assumptions formulated above and with generalized forces (2.7). Suppose that there
are no gyroscopic forces of zero order, i.e. C = O or C = ¢C; and the resonance relations (2.1) with
N# 0or(2.2) hold. Then arbitrary given non-conservative perturbing forces eéFq do not affect the strong
stability or instability of the unperturbed system with multipliers of the first or second classes.

Corollary 1. If C = O or C = £C;, Theorem 4 also holds for Lagrange equations of the second kind
that include arbitrarily given non-conservative perturbing forces.

These results may be generalized to the case n > 2. The next theorem holds for arbitrary dimension
n = 1. Suppose that the mechanical system admits of a gyroscopic interaction of zero order, i.e. C #
0, and that it includes definitely dissipative and non-conservative perturbing generalized forces such
that, on the unit sphere |q| =1

g =-max(Gq,q) >0, h=max(FG'Fq,q)=0 2.9)

Theorem 6. Consider Lagrange’s equations of the second kind with Lagrangian (2.6), (q, q') € R*
(n = 1) and generalized forces (2.7), on the assumption that all the conditions analogous to those
formulated above for n = 2 hold. Suppose that the perturbing generalized forces, which depend on the
velocities, are definitely dissipative, i.e. the matrix G is negative-definite. Suppose moreover that
Bi+Bv# N,jv=12...,n,N=12,...,ie. there are no basic or combined-sum resonances of
any multiplicity, B;# B, forj# v, and moreover the least frequency B = min{B,, ..., B,} > 0 satisfies
the condition # < B%. Then the equations are strongly stable for a given non-Hamiltonian perturbation
if both matrices B and P are positive-definite and strongly unstable otherwise. If there are no non-
conservative forces, h = 0, and the condition # < B’ is always satisfied.

We add a few comments about Lagrange’s equations of the type described in Theorem 6. Increasing
the least natural frequency to a value B > V(h/g), say, by increasing the stiffness [13] of the mechanical
system, one can make the equations strongly stable or unstable under a given non-Hamiltonian
perturbation, depending on whether both matrices B and P are positive-definite or not, provided that
there are no critical relations of fundamental, simple or sum combination resonances.

In conclusion, we note that the concept of a non-Hamiltonian perturbation presupposes that the
canonical variables p and g can be fixed. As we know, the Hamiltonian property of a system of differential
equations is not invariant under a change of variables, even if fixed generalized coordinates are preserved.
Thus, certain modifications of the Lagrangian may transform Lagrange’s equations of the second kind
into Lagrange’s equations of the second kind with generalized forces of another type. Under such
conditions the Lagrangian may lose its property of convexity with respect to q.

In view of the property of such preliminary transformations, we have omitted the requirement, quite
common in mechanics, that the matrix B must be positive-definite. Finally, the equations of motion of
certain linear holonomic mechanical systems with potential and definitely dissipative forces may also
be reduced to Hamiltonian form (see, for example, [14]). However, under such transformations of
definitely dissipative forces into potential forces, the corresponding functions H and L, which were
originally independent of or periodically dependent on ¢, may lose that property, so that it becomes
impossible to apply our strong stability and instability theorems.

We are indebted to E. E. Shno!’ for useful comments, advice and measurement and for suggesting
additions.
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(93-013-16285) and the International Science Foundation (NW2000).
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