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A definition of strong stability and strong instability is proposed for a linear periodic Hamiltonian system of differential equations 
under a given non-Hamiltonian perturbation. Such a system is subject to the action of periodic perturbations: an arbitrary 
Hamiltonian perturbation and a given non-Hamiltonian one. Sufficient conditions for strong stability and strong instability are 
established. Using the linear periodic Lagrange equations of the second kind, the effect of gyroscopic forces and specified dissipative 
and non-conservative perturbing forces on strong stability and strong instability is investigated on the assumption that the critical 
relations of combined resonances are satisfied. 

Because of the presence of dissipative forces, many systems are described by differential equations that 
may be considered Hamiltonian only to within a certain degree of accuracy. Dissipative and non-conser- 
vative forces are often introduced so as to stabilize the performance of various controlled systems. More- 
over, a paradoxical effect has been observed and investigated ([1-3], and so on), consisting of the 
expansion of the unstable regions of combined resonances when the dissipative forces are increased. 
In that connection Kh'pichnikov [4, 5] proposed an approach which, starting from already known effects 
due to the influence of dissipative forces on the stability of equilibrium positions in stationary Lagrangian 
systems [6, 7], extends the analysis to the case of almost-Hamiltonian linear periodic systems of differen- 
tial equations. 

A theorem proved in [5] provides sufficient conditions for the system considered below to be strongly 
stable or strongly unstable with respect to a given non-Hamiltonian perturbation. The theorem has been 
used [8, 9] to investigate the stability of the rotational motion of a composite satellite in a slightly elliptic 
orbit. 

This paper presents a stronger version of that theorem. The following fact will be illustrated through 
examples. Suppose that the unperturbed periodic Hamiltonian system is strongly stable in Krein's sense 
[10--12], i.e. it is stable and remains stable under arbitrary periodic Hamiltonian perturbations, and 
suppose that when a given non-Hamiltonian periodic perturbation is applied the system becomes asymp- 
totically stable. At o3mbined resonances, the combined action of both factors may make the system 
unstable, i.e. it will not always be strongly stable in the sense defined in this paper. Conversely, if a non- 
Hamiltonian perturbation induces instability, the system may be stabilized by the addition of a suitable 
Hamiltonian term. 

Thus, the paradoxical effect of [1-3] is increased further: the introduction of dissipative perturbing 
forces in a periodic Hamiltonian system, strongly stable in Krein's sense, may make the system unstable 
at combination resortances. 

1. THE STRONG STABILITY AND STRONG INSTABILITY THEOREM 

Consider a linear periodic Hamiltonian system of ordinary differential equations 

x = IHx, x = (p, q) ~ R 2n 

and a perturbed linear periodic system "close to" system (1.1): 

(1.1) 
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x" = I ( H  + e H  l )x  + gAx  + o ( c ) x ,  x = ( p , q )  ¢ R 2n (1.2) 

where e ~> 0 is a small parameter, and H r = H, Hrl = HI, A, O(e) are real 2n x 2n matrices which 
are piecewise continuous and T-periodic in the independent variable~the time t. The elements of 
o(e) are of first order of smallness in e. The matrices I, H and • may be written in partitioned form 
a s  

i:l o . : "  ,:1, (1.3) 

where {Hjv, Ajv} are n x n matrices, Hll , Hz~ are symmetric and E is the n x n identity matrix. 
The phase space R 2n = {x} of canonical variables x = (p, q) of systems (1.1) and (1.2), and 
the spaces R ~ = {p} of generalized momenta p = (Pl, • • • ,P~) and R ~ = {q} of generalized coordinates 
q = (ql ,  • • • ,  qn) are  considered with the standard Euclidean structures; scalar products are denoted 
by ordinary parentheses. The Hamiltonian of the unperturbed system is H = (Hx, x)/2. The matrix 
ell1 denotes an arbitrary Hamiltonian perturbation and the matrix eA is a given non-Hamiltonian 
perturbation. 

System (1.1) or (1.2) is said to be stable (unstable) if its trivial solution x --- O is stable (unstable) in 
Lyapunov's sense. 

Def in i t i on .  System (1.1) is said to be strongly stable (strongly unstable) under the non-Hamiltonian 
perturbations eAx if, for any real symmetric piecewise-continuous T-periodic matrix H1, system (1.2) 
is stable (unstable) for any sufficiently small e > 0. 

Our problem is to derive criteria for the strong stability and strong instability of system (1.1) under 
a given non-Hamiltonian perturbation. 

Let O(t, E) be a fundamental matrix of system (1.2), normalized at zero, and let O(t) = O(t, 0). 
Consider the operators ~,  Oe: R z~ ~ R z~ corresponding to systems (1.1) and (1.2) over the period 
T. To the operator ~: R z~ -> R ~ there corresponds a symplectic matrix • = O(T). 

In the space R z~, we define a skew product 

[ x , z ]  = ( I x , z )  Vx,  z ~ R 2n (1.4) 

corresponding to the symplectic coordinates p, q, and a bilinear form 

[ x , z ] j  = (Jx,  z )  Vx,  z E R 2n (1 .5)  

T 
j = j ( ~ p ( t ) ) r ( A r i + i A ) d p ( t ) d t ,  j r  = _ j  (1.6)  

0 

If det J # 0, the bilinear form (1.5) will define another skew product in R z~. 
Consider the standard complexification of R z¢, obtained by changing to the 2n-dimensional complex 

space C 2n = cR2n. The scalar and skew products will be carried over from R 2n to C z¢ not in the usual 
manner but by extending them by linearity over the field C 1. The complexifieations of the real linear z~ 
operators defined in R will be denoted by the same letters. 

If system (1.1) is such that at least one of its multipliers 

IXl ..... Ixk, ~l ..... ~k, k~< n, (IXj ;el.tv, IXj ~ v  for j ~ v )  (1.7) 

i.e. the eigenvalues of the operator O, differs from unity in absolute value, the question under considera- 
tion is trivial: the system is strongly unstable for any given non-Hamiltonian perturbation. From now 
on, therefore, we shall assume that the multipliers (1.7) all lie on the circle I IX l -- 1 in the complex 
plane. It is also important that all the results of this paper are obtained on the assumption that system 
(1.1) is stable (the elementary divisors of • are prime). 

If IX is an r-fold multiplier of system (1.1), we let T ~ denote the corresponding r-dimensional 
complex invariant root subspace of O, putting T~ = T ~, if IX = +_1 and T~ = T ~ + T g if IX # +1. 
Each invariant subspace T~t of ~ has a basis {ej, ~j)[ such that 

[e j ,ev]=0;  [ej ,$v]=0,  j ~ v ;  [e j ,~ j ]~0;  j , v = l , 2  ..... r (1.8) 
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and  if the  e l emen ta ry  divisors a re  pr ime,  one  can  assume tha t  cl~j = Itej, j = 1, 2 . . . .  , r. M o r e o v e r  
( summing  f r o m j  = l ' t o j  = r), we have R e  T~t = {x = Y.(xle j + $j~j) Ixj,$j ~ C1}- - the  subspace of  real  
vec tors  in T~, so tha t  x = 2X(~rj - rljsj), where  xj = ~ + i~lj, ~,  11j ~ R 1, ej = rj + isj, rj, s j¢  R 2n. The 
space C 2n m a y  thus be  expressed as a direct  sum C 2n = T,1 + ... + T#, o f  even-d imens iona l  O- invar ian t  
subspaces.  

La t e r  we will need  some  e lements  f rom the theory  of  Krein,  Ge l ' l and  and  Lidskii. A mult ipl ier  It o f  
a symplectic  m a p p i n g  O: R 2n ---) R 2n is said to be  sign-definite if the quadra t ic  fo rm [Ox, x], x e Re  T~ 
is sign-definite. T h e  multipliers + 1, - 1  and mult ipl iers  with mult iple e l ementa ry  divisors cannot  be  sign- 
definite. For  an r-fifld mult ipl ier  tt with p r ime  e lementa ry  divisors and such that  y = I m  It # 0 we have  

[ O x , x ]  = 2 iyX Ixjl 2 [ e j , [ j ]  = 4V]~ ( ~  + ~ ) t r j , s j ]  (1.9) 

i.e. It is sign-definite if and only if all the number s  {i[ej, ~j]}~ have the same  sign. A p r ime  mult ip l ier  
is always sign-definite. A symplect ic  t r ans fo rmat ion  • o f  R 2n is said to be  strongly stable if any 
sufficiently d o s e  symplectic t r ans fo rmat ion  of  the same  space is also stable. A symplectie  t rans forma-  
t ion • is s t rongly stable if and  only if all its eigenvalues lie on the unit  circle I It I = 1 and  are all sign- 
definite. 

A few examples will now illustrate the qualitative effects that may be caused by the combined action of 
Hamiltonian and non..Hamiltonian perturbations in cases of combined resonances. We will first carry out the analysis 
in the class of operators corresponding to systems (1.1) and (1.2) over one period, and then consider specifie examples 
of the systems them~.lves. Putting n = 2, T = 21t, define 

O ( 2 n , ¢ ) = I + £ ~ i ,  clh= , D=  (1.10) 
21 

where ~, d12 and d21 are real constants. The matrix O(2g, £) is symplectic for £ > 0 if and only if 0 = 0, d12 -- d21. 
An easy analysis of tbe absolute values of the multipliers, i.e. the roots of the equation 

114 +(2 - 2 0 £  - d12d21£ 2 )112 +(I - 0 £ )  2 = 0 (1.11) 

shows that the operator ~ is stable. In the unperturbed case, O(21t, 0) = I, we have two sign-definite double 
multipliers {-1, +1}, i.e. system (1.1) is stable in Krein's sense. 

Example 1. A given non-Hamiltonian (index minus) perturbation: d12 = d12 = 1, d2i = d~l = -1, o = 0 defining 
an unstable system (L2) when £ > 0, H~ = O, may be stabilized by a suitable Hamiltonian parametric applied 
force. Thus, when tkis perturbation is combined with a Hamiltonian (index plus) pe+rturbation d12 = d1+2 = 2, 

+ 
d21 = d21 = 2, 0 = 0, the total perturbation will be d12 =d{2 + d12 = 3, d21 = d~l + d21 = 1, 0 = 0, which makes 
system (1.2) stable when £ > 0. Thus, a system which is strongly stable in Krein's sense and unstable under a given 
non-Hamiltonian perturbation when £ > 0, H1 - O may be stabilized by a Hamiltonian perturbation, i.e. it need 
not be strongly unstable in the sense of the definition adopted here. 

Example 2. A given non-Hamiltonian perturbation d12 = d?2 = -1, d21 = d21 = -3, O = 1/2 defines an asymptotically 
stable system (1.2) when e > 0, H1 -= O. In combination with a Hamiltonian perturbation d~2 = 2, d~'l = 2, o = 0 

~" + 1 we get d12 = di-2 + d12 = 1, d21 = d~l + d 21 = -1,  0 = /2 and system (1.2) becomes unstable when e > 0. Thus, 
a system that is strongly stable in Krein's sense and asymptotically stable under a given non-Hamiltonian perturbation 
when e > 0, H1 -- O need not be strongly stable in the sense of the definition adopted here. 

Taking a specific example of systems (1.1) and (1.2), let us put H1 =- O and include all perturbations in the matrix 
A. System (1.1) will be 

Pi=-t°lql, P2=-(O2q2,  qi=tOIPl  , q2=tO2P2 (1.12) 

where the case corresponding to combined-difference resonance is 

(Ol =[~1 = ) { + k l ,  (o2 =[~2 = I/4+k2, k 2 ~>k I, k I eN={0,1,2,...}; [32-[31 = k 2 - k l  1>0 (1.13) 

and that correspondirLg to combined-sum resonance is 

( o l = ~ l = l ~ + k l ,  - ( ° 2 = ~ 2 = Y 4 + k 2 ,  k2~>kl, k I ~ N ;  6 2 + [ 3 1 = i + k l + k 2 ~ l  (1.14) 

At simple resonano~ (1.13), k2 = kl, the effects under consideration may occur in linear systems with constant 
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coefficients, i.e. A = const. The matrix (1.10) corresponds to the perturbed system (1.2) with 

A l l = - ( ( 4 k  l+l )nD+2oE)/ (8rc) ,  AI2=(2D+(4k I+ l )ogE) / (8n)  

A21 =( -2D+(4k  I +l)ogE)/(8~) ,  A22 =((4k I + l )~D-2oE) / (8rc)  

This system is equivalent to the following Lagrange equations of the second kind 

qi" / c°l + talql = -eoqi / (2(o1~) + edl2q2 / (2~) + O(E 2 ) 

q[" I (o 1 + fDlq 2 = -eoq[ I (20) I ~) + F-d21 ql [ (2~) + O(E 2 ) 

In the general case of resonances (1.13) and (1.14), 
piecewise-smooth 2n-periodic matrix A(t) defined over 

(1.15) 

(1.16) 

the matrix (1.10) corresponds to system (1.2), e.g. with a 
the period t e [0, 2re] by setting ci = cos(t~t), si = sin(to/t), 

i = 1, 2 ,  ~ = (1  - c o s  t ) / ( 2 ~ )  

-S?O -ClS2dl2 = ~ SlCl(~ ClC2dl2 
All  = _C2Sld21 -s20 ' Al2 [ClC2d21 s2c2(~ 

ClSlO -Sl '2d12 =~-c?(~ SlC2dl2 [ 
A21 = _SlS2d21 c2s20 ' A22 i S2Cld21 -c20 [ 

(1.17) 

The equivalent Lagrange equations of the second kind for this system are rather cumbersome and will be omitted 
for brevity. 

We now re turn  to our  investigation o f  the general  problem.  

Definition. We shall say that  a multiplier St of  system (1.1) is of  first class if both  quadratic forms 
[4)x, x], [4)x, x]j, x ~ Re T~t, are sign-definite of  different  signs; a multiplier IX of  system (1.1) will 
be of  second class if the closure of  the domain  in which the quadrat ic  form [~x,  x] x e Re  T~t is 
sign-definite (without the point  x = O) is a subdomain of  that  in which the form [(I~x, x]j, x e Re  T~t 
is sign-definite with the same sign. 

Not  every multiplier is of  first or  second class. In particular,  a necessary condit ion for  IX to be of  first 
class is that  it should be sign-definite, i.e. that  the corresponding quadrat ic  form [~x,  x], x a Re T a 
should be sign-definite. 

Theorem 1. If every multiplier ILl . . . .  , Ixk of  the unper tu rbed  system (1.1) is of  first class, then system 
(1.1) is strongly stable unde r  a given non-Hamil ton ian  per turbat ion.  If  at least one  of  them is of  second 
class, the unper turbed  system (1.1) is strongly unstable under  a given non-Hamil tonian  per turbat ion.  

This is the fundamental  t heo rem on the sufficient condit ions for  the strong stability and instability 
of  system (1.1) under  a given non-Hamil tonian  perturbat ion.  The  p roo f  makes use of  discrete Lyapunov 
and Chetayev functions. If the multipliers Ixl(e), • • •, Ixl(e) of  the per turbed  system (1.2) tend continuously 
as e ---> 0 to a multiplier Ix of  system (1.1), one  introduces the direct  sum T~t = Trtl( 0 + ... + T~a(0 
of  O: inva r i an t  subspaces and, in the corresponding real  space Re T~, takes the quadrat ic  form 
[O~x, x], x ~ Re T~t as a Lyapunov or  Chetayev function. The  o the r  changes needed  in the p roo f  given 
in [5] are obvious and will be omi t ted  for  brevity. 

Remarks. 1. Strongly stable systems with a given non-Hamiltonian perturbation that satisfy the conditions of 
Theorem 1 are characterized by the property that the trivial solution is asymptotically stable for all sufficiently 
small e > 0. 

2. There is an important difference between this situation and that of [2], in which the terms "strong stability 
and instability of combined resonance frequencies" are considered for a different class of admissible perturbations: 
the arbitrary perturbations in that paper are of a higher order of smallness relative to the given ones; the latter, as 
in this paper, may be non-Hamiltonian. In addition, the unperturbed system there is gyroscopically disconnected. 

3. Shnol' has shown that the sufficient conditions established in Theorem 1 for the strong stability of a system 
(1.1) under a given non-Hamiltonian perturbation are also necessary. His exposition is based on his own definition, 
which is equivalent to ours: system (1.1) is strongly stable under a given non-Hamiltonian perturbation eA if it 
satisfies the following conditions: (a) it is stable when e = 0; (b) it is asymptotically stable when e > 0, and (for 
sufficiently small e) this asymptotic stability is preserved for any superimposed perturbation of order greater than 
e; (c) both properties are preserved in some neighbourhood of the system, i.e. for I H - H I < 5, where 6 is 
independent of e, and H is the Harniltonian of the new system. 
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4. If the sufficient conditions for strong stability (strong instability) under a given non-Hamiltonian 
perturbation are satisfied for system (1.1) with a Hamiltouian function H, they are also satisfied for any "nearby" 
T-periodic Hamiltonian systems, i.e. for I H - H  I < 5, where 5 is independent of e Thus these conditions guarantee 
stability (instability) in an extended sense---under finite Hamiltonian perturbations. 

In the non-resonant case [4] the contribution to [ Ixi(e) I = ~qe + o(e), i = 1, 2 , . . . ,  n, from the 
Hamiltonian part ~ff the perturbation is of order o(e). Here the asymptotic stability (instability) of system 
(1.2) when H1 =-- O, as inferred by analysing the signs of ~ q , . . . ,  rm, implies the strong stability (strong 
instability) of system (1.1) under a given non-Hamiltonian perturbation. Below, therefore, we shall 
consider the resonant case, assuming that at least one of the multipliers (1.7) is multiple and referring 
to the corresponding relations among the parameters of system (1.1) as the critical parametric resonance 
relations. Taking iaato account that the multipliers +1, -1 and multipliers with multiple elementary 
divisors can be of neither first nor second class, we exclude them from consideration. Now, for an r- 
fold multiplier Ix, 'I = Im Ix * 0, we have 

r 
[Ox, x]s = 4 T E{(~j~v +lqjqv)[rv,sjlj +~jqv([Sj'Sv]J +[rj,rv]J)} 

j,V=I 
(1.18) 

When H = const, there is no need to find the matrix O(t). Indeed, let Ix be an r-fold multiplier of 
system (1.1). Theft the set of eizenvalues of the matrix I i t  includes numbers -i1~1, • • •, ___i13~, where 131 
> 0 , . . . ,  ~l~ > 0, s3 that IX = e ifffl" or e-/~J r for allj  = 1, 2 . . . .  , r. The corresponding eigenvectors of the 
matrices 1It and ~' are identical. It will be convenient to modify our notation, requiring henceforth that 
ej be an eigenveetor of Ht  belonging to the eigenvalue i~ j , j  = 1, 2 , . . . ,  r. Then, for j,  v = 1, 2 , . . . ,  r, 
we have [ej, ej] = i(Hej, ej)/~ and 

T 
[e j,  e v ],j = ~ e i(~+fjv )' ((A rI + iA)ej ,  e v)dt 

0 

[ei,~v] J = ~ eitPJ-~O'((ArI + IA)ej,~v)dt 
0 

(1.19) 

2. A P P L I C A T I O N S  OF T H E O R E M  1 

First let n = 2. We also put H = const, [31 > 0, []2 > 0 and, without loss of generality, (Hel, el) > 0, 
T = 2~. We will refer to a matrix as positive-definite, positive-semidefmite or sign-variable if the 
corresponding quadratic form has the appropriate property. For the critical relations of combination 
resonances 

I[~! -~21= N, N=0 ,1 ,2  ..... ~ = -2sin(27t~l) ~ 0 (2.1) 

[~l +[$2 = N, N = l , 2  ..... )C =-2sin(2g~s) ~ 0 (2.2) 

we have, respectiwfly 

[~x ,  x] = Z[(~  + ~t 2)(He,, [0 ) / ~, + ( ~  + 1122)(He 2, ~2) / ~2 ] (2.3) 

[~x ,  x ] j =  Z[(~ 2 + Tl~)a + ( ~  + q~)b + 2d(~,~ 2 + TI,TI2) + 2c(~2n , - ~ln2 )] 

[*x ,  x] = Z[(~ 2 + Tl~)(He I , ~, ) / ~, - (~2 +.q22 )(He2, e2 ) )' ~2 ] (2.4) 

[~x ,  x]j = ~[(~2 + Tl~)a - (~22 + 1122)b + 2e(~1~2 - ~TI2 ) + 2f0h~2 + ~lrl2)] 

[el ,~;l]  J = ai, [e2 ,e2]  J = bi, [ e l , e2 ]  J = c + i d ,  [ e l , e2 ]  J = e + / f  (2.5) 

These formulae imply the following propositions. 

Theorem 2. Assume that conditions (2.1) for combined-difference resonance are satisfied. System 
(1.1) is strongly stable under a given non-Hamiltonian perturbation if a < 0, ab > c 2 + d E and H is 
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positive-definite; a sufficient condition for the system to be strongly unstable is that one of the follow- 
ing conditions holds: (1) ab > c 2 + d 2 and H is non-singular and sign-variable; (2) a > 0, ab > c 2 + d 2 
and H is positive-semidefinite; (3) c = 0, d = 0, a ;~ 0, b ~< 0 and H is sign-variable, [~#(He2, e2) 
[52b(Hel, el). 

Theorem 3. Assume that conditions (2.2) for overall combination resonance are fulfilled. System (1.1) 
is strongly stable under a given non-Hamiltonian perturbation ira < 0, ab < -e  2 _ f2  and 1t is positive- 
definite; a sufficient condition for the system to be strongly unstable is that one of the following conditions 
holds: (1) ab < --e 2 _ f 2  and II is positive-definite, (2) a > 0, ab < -e  2 _ f 2  and I t  is sign-variable or 
singular, (3) e = 0 , f  = 0, a ~> 0, b ~ 0 and H is positive-definite, ~la(He2, e2) # lSzb(Het, el). 

Suppose that system (1.1) is strongly stable in Krein's sense, i.e. the quadratic form (1.9) is sign-definite. 
Then, if a given non-Hamiltonian perturbation is introduced, it may either remain strongly stable or 
become strongly unstable. 

For example, for the difference resonance (2.1 ), if ab > c 2 + d 2, and in the case of the sum resonance 
(2.2) if ab < -e  2-f2,  the system will remain strongly stable under a given non-Hamiltonian perturbation 
if a < 0 or, conversely, become strongly unstable if a > 0. 

We will now analyse in greater detail the influence of forces of various kinds on strong stability and 
instability as defined here. Suppose that systems (1.1) or (1.2) are derived from Lagrange's equations 
of the second kind, so that the Hamiltonian function H is the Legendre transform of the Lagrange 
function 

L t = L+e/.  I +(o(E)y,y),  L = ~ [ ( B q ' , q ) + ( C q ,  q ' ) - ( P q ,  q)l (2.6) 

where L 1 - -  Ll(t ,  q, q )  is a quadratic form in the variable y = (q, q) ,  piecewise-continuous and 2n- 
periodic in t, characterizing an arbitrary Hamiltonian perturbation; q' ~ R n is the vector of generalized 
velocities that determine the given non-Hamiltonian perturbation have the form 

Q = EGq" + EFq (2.7) 

For simpficity, the matrices B, C, P, G, F are assumed to be constant, det B # 0, det P # 0, B is 
positive-definite or sign-variable, and we may assume without loss of generality that B T = B, C T = 
-C,  pT = p, G T = G, ~ r  = -F.  In accordance with the usual terminology [7], we will call the forces eFq 
non-conservative and the forces eGq" dissipative (definitely. dissipative) if the matrix (--G) is positive- 

1 1 T 1 1 semidefinite (positive-definite). Then Hll  = B - ,  H12 = -B-  C/2, H ~  -- P + C B- t2/4, All = G B - ,  a12 
= F - GB-~C/2, A21 = A22 = O. Again putting n = 2 and assuming that 131 # ~ ,  we find c = 0, d = 0, 
e = 0, f --- 0 and also 

a 
~ .  = ~i (Gfl, ~t)_ i(Ffl, ~l) ' b "4--~'=~2(Gf2,f2)-i(Ff2,f2), fl #0 ,  f2 ;~0 (2.8) 

where fj are the projections of ej on the complexification of the space R n = {q},j  = 1, 2. 
The next two theorems are proved using formulae (2.8) and Theorems 2 and 3 as well as Lemma 2 

of [4]. 

Theorem 4. Consider Lagrange's equations of the second kind with Lagrangian (2.6) satisfying the 
above assumptions. Suppose that the generalized perturbing forces Q = eGq" are definitely dissipative 
or possess the property (Gfj, fj) < 0, j = 1, 2. Then, if the difference combination-resonance critical 
relations (2.1) hold, N # 0, the unperturbed system of equations is strongly stable under a given non- 
Hamiltonian perturbation if both matrices B and P are positive-definite, and strongly unstable otherwise. 
If the sum combination-resonance critical relations (2.2) hold, the system cannot be either strongly stable 
or strongly unstable with multipliers of the first or second classes. 

Theorem 4 is an analogue of the third and fourth Thomson-Tait theorems [7]; it shows that these 
theorems also hold when there is an arbitrary sufficiently small Hamiltonian periodic parametric 
perturbation not only in the non-resonant case [4], but also in the case of difference combination 
resonance (2.1), N # 0. 

Let us explain this in greater detail. If the matrices B and P are positive-definite, i.e. the unperturbed 
kinetic energy (Bq', q')/2 is positive-definite and the unperturbed potential energy U = (Pq, q)/2 has 
a minimum at q = O, then the superposition of dissipative perturbing forces makes the system strongly 
stable under this non-Hamiltonian perturbation. But if either of the matrices B or P is not positive- 
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definite, e.g. if the potential energy U does not have a minimum at q = O, and the unperturbed system 
is stabilized when there is no dissipation by gyroscopic forces, then the superposition of definitely 
dissipative perturbing forces makes the system strongly unstable. 

Now suppose thai: the generalized forces (2.7) include non-conservative forces, i.e. F g O. Taking 
into account that when C = O the vectors fl and f2 may be assumed to be real, we obtain the following 
proposition. 

Theorem 5. Consider a system of Lagrange equations of the second kind with Lagrangian (2.6) 
satisfying all the assumptions formulated above and with generalized forces (2.7). Suppose that there 
are no gyroscopic forces of zero order, i.e. C -- O or C = EC1 and the resonance relations (2.1) with 
N ,  0 or (2.2) hold. Then arbitrary given non-conservative perturbing forces eFq do not affect the strong 
stability or instabiliv.¢ of the unperturbed system with multipliers of the first or second classes. 

Corollary 1. If C =-" O or C = eC1, Theorem 4 also holds for Lagrange equations of the second kind 
that include arbitrarily given non-conservative perturbing forces. 

These results may be generalized to the case n > 2. The next theorem holds for arbitrary dimension 
n ~> 1. Suppose that the mechanical system admits of a gyroscopic interaction of zero order, i.e. C 
O, and that it includes definitely dissipative and non-conservative perturbing generalized forces such 
that, on the unit sphere I q I = 1 

g = - m a x ( G q ,  q) > O, h = max(FG -IFq,q)  ~> 0 (2.9) 

Theorem 6. Consider Lagrange's equations of the second kind with Lagrangian (2.6), (q, q') • R 2n 
(n ~> 1) and generalized forces (2.7), on the assumption that all the conditions analogous to those 
formulated above for n = 2 hold. Suppose that the perturbing generalized forces, which depend on the 
velocities, are definitely dissipative, i.e. the matrix G is negative-definite. Suppose moreover that 
[~j + ~ ~ N,j ,  v = 1, 2 . . . . .  n, N = 1, 2 , . . . ,  i.e. there are no basic or combined-sum resonances of 
any multiplicity, [~j, ~ f o r j ,  v, and moreover the least frequency [$ = min{[31,..., [3n} > 0 satisfies 
the condition h < [3Zg. Then the equations are strongly stable for a given non-Hamiltonian perturbation 
if both matrices B and P are positive-definite and strongly unstable otherwise. If there are no non- 

2 conservative forces, h = 0, and the condition h < [3 g is always satisfied. 
We add a few comments about Lagrange~s equations of the type described in Theorem 6. Increasing 

the least natural frequency to a value [3 > ~l(h/g), say, by increasing the stiffness [13] of the mechanical 
system, one can make the equations strongly stable or unstable under a given non-Hamiltonian 
perturbation, depending on whether both matrices B and P are positive-definite or not, provided that 
there are no critical relations of fundamental, simple or sum combination resonances. 

In conclusion, we note that the concept of a non-Hamiltonian perturbation presupposes that the 
canonical variables p and q can be fixed. As we know, the Hamiltonian property of a system of differential 
equations is not invafiant under a change of variables, even if fixed generalized coordinates are preserved. 
Thus, certain modifications of the Lagrangian may transform Lagrange's equations of the second kind 
into Lagrange's equations of the second kind with generalized forces of another type. Under such 
conditions the Lagrangian may lose its property of convexity with respect to q'. 

In view of the property of such preliminary transformations, we have omitted the requirement, quite 
common in mechanics, that the matrix B must be positive-definite. Finally, the equations of motion of 
certain linear holonomic mechanical systems with potential and definitely dissipative forces may also 
be reduced to Hamiltonian form (see, for example, [14]). However, under such transformations of 
definitely dissipative forces into potential forces, the corresponding functions H and L, which were 
originally independent of or periodically dependent on t, may lose that property, so that it becomes 
impossible to apply our strong stability and instability theorems. 

We are indebted to E. E. Shnol' for useful comments, advice and measurement and for suggesting 
additions. 
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